*See also: Penrose Tiling*

A quasiperiodic crystal, or, put succinctly, quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical crystallographic restriction theorem, can possess only two, three, four, and six-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other symmetry orders, for instance five-fold.

Aperiodic tilings were discovered by mathematicians in the early 1960s, and, some twenty years later, they were found to apply to the study of quasicrystals. The discovery of these aperiodic forms in nature has produced a paradigm shift in the fields of crystallography. Quasicrystals had been investigated and observed earlier, but, until the 1980s, they were disregarded in favor of the prevailing views about the atomic structure of matter. In 2009, after a dedicated search, a mineralogical finding, icosahedrite, offered evidence for the existence of natural quasicrystals.

Roughly, an ordering is non-periodic if it lacks translational symmetry, which means that a shifted copy will never match exactly with its original. The more precise mathematical definition is that there is never translational symmetry in more than n – 1 linearly independent directions, where n is the dimension of the space filled, e.g., the three-dimensional tiling displayed in a quasicrystal may have translational symmetry in two dimensions.

The ability to diffract comes from the existence of an indefinitely large number of elements with a regular spacing, a property loosely described as long-range order. Experimentally, the aperiodicity is revealed in the unusual symmetry of the diffraction pattern, that is, symmetry of orders other than two, three, four, or six. In 1982 materials scientist Dan Shechtman observed that certain Aluminium-Manganese alloys produced the unusual diffractograms which today are seen as revelatory of quasicrystal structures. Due to fear of the scientific community's reaction, it took him two years to publish the results for which he was awarded the Nobel Prize in Chemistry in 2011.

## HistoryEdit

In 1961, Hao Wang asked whether determining if a set of tiles admits a tiling of the plane is an algorithmically unsolvable problem or not. He conjectured that it is solvable, relying on the hypothesis that any set of tiles, which can tile the plane can do it periodically (hence, it would suffice to try to tile bigger and bigger patterns until obtaining one that tiles periodically).

Nevertheless, two years later, his student, Robert Berger, constructed a set of some 20,000 square tiles (now called Wang tiles), which can tile the plane but not in a periodic fashion. As the number of known aperiodic sets of tiles grew, each set seemed to contain even fewer tiles than the previous one. In particular, in 1976, Roger Penrose proposed a set of just two tiles, up to rotation, (referred to as Penrose tiles) that produced only non-periodic tilings of the plane. These tilings displayed instances of fivefold symmetry. One year later, Alan Mackay showed experimentally that the diffraction pattern from the Penrose tiling had a two-dimensional Fourier transform consisting of sharp 'delta' peaks arranged in a fivefold symmetric pattern. Around the same time, Robert Ammann had created a set of aperiodic tiles that produced eightfold symmetry.

Mathematically, quasicrystals have been shown to be derivable from a general method, which treats them as projections of a higher-dimensional lattice. Just as circles, ellipses, and hyperbolic curves in the plane can be obtained as sections from a three-dimensional double cone, so too various (aperiodic or periodic) arrangements in two and three dimensions can be obtained from postulated hyperlattices with four or more dimensions. Icosahedral quasicrystals in three dimensions were projected from a six-dimensional hypercubic lattice by Peter Kramer and Roberto Neri in 1984. The tiling is formed by two tiles with rhombohedral shape.

Shechtman first observed ten-fold electron diffraction patterns in 1982, as described in his notebook. The observation was made during a routine investigation, by electron microscopy, of a rapidly cooled alloy of Aluminum and Manganese prepared at the National Bureau of Standards (now NIST).

In the summer of the same year, Shechtman visited Ilan Blech and related his observation to him. Blech responded that such diffractions were seen before.[9][10] Around that time, Shechtman also related his finding to John Cahn of NIST who did not offer any explanation and challenged him to solve the observation. Shechtman quoted Cahn as saying: "Danny, this material is telling us something and I challenge you to find out what it is".

The observation of the ten-fold diffraction pattern lay unexplained by Shechtman and others for two years until the spring of 1984, when Blech asked Shechtman to show him his results again. A quick study of Shechtman’s results showed that the common explanation for a ten-fold symmetrical diffraction pattern, namely the existence of twins, was ruled out by his experiments. Since periodicity as well as twins were ruled out, Blech, unaware of the two dimensional tiling work, was looking for another possibility: a completely new structure containing cells, which are connected to each other by defined angles and distances but without translational periodicity. Blech decided to use a computer simulation to calculate the diffraction intensity from a cluster of such a material without long-range translational order but still not random. He termed this new structure multiple polyhedral.

The idea of a new structure was the necessary paradigm shift to break the impasse. The “Eureka moment” came when the computer simulation showed sharp ten-fold diffraction patterns, similar to the observed ones, emanating from the three-dimensional structure devoid of periodicity. The multiple polyhedral structure was termed later by many researchers as icosahedral glass but in effect it embraces any arrangement of polyhedra connected with definite angles and distances (this general definition includes tiling, for example).

Shechtman accepted Blech’s discovery of a new type of material and it gave him the courage to publish his experimental observation. Shechtman and Blech jointly wrote a paper entitled “The Microstructure of Rapidly Solidified Al6Mn” and sent it for publication around June 1984 to the Journal of Applied Physics (JAP). The JAP editor promptly rejected the paper as being better fit for a metallurgical readership. As a result, the same paper was re-submitted for publication to the Metallurgical Transactions A, where it was accepted. Although not noted in the body of the published text, the published paper was slightly revised prior to publication.

Meanwhile, on seeing the draft of the Shechtman-Blech paper in the summer of 1984, John Cahn suggested that Shechtman’s experimental results merit a fast publication in a more appropriate scientific journal. Shechtman agreed and, in hindsight, called this fast publication - "a winning move”. This paper, published in the Physical Review Letters”, repeated Shechtman’s observation and used the same illustrations as the original Shechtman-Blech paper in the Metallurgical Transactions A. Naturally, being the first paper to appear in print, the Physical Review Letters paper caused considerable excitement in the scientific community.

Next year, Ishimasa et al. reported twelvefold symmetry in Ni-Cr particles. Soon, eightfold diffraction patterns were recorded in V-Ni-Si and Cr-Ni-Si alloys. Over the years, hundreds of quasicrystals with various compositions and different symmetries have been discovered. The first quasicrystalline materials were thermodynamically unstable—when heated, they formed regular crystals. However, in 1987, the first of many stable quasicrystals were discovered, making it possible to produce large samples for study and opening the door to potential applications. In 2009, following a 10-year systematic search, scientists reported the first natural quasicrystal, a mineral found in the Khatyrka River in eastern Russia. This natural quasicrystal exhibits high crystalline quality, equalling the best artificial examples.[15] The natural quasicrystal phase, with a composition of Al63Cu24Fe13, was named icosahedrite and it was approved by the International Mineralogical Association in 2010. Furthermore, analysis indicates it may be meteoritic in origin, possibly delivered from a carbonaceous chondrite asteroid.

In 1972, de Wolf and van Aalst reported that the diffraction pattern produced by a crystal of sodium carbonate cannot be labeled with three indices but needed one more, which implied that the underlying structure had four dimensions in reciprocal space. Other puzzling cases have been reported, but until the concept of quasicrystal came to be established, they were explained away or denied. However, at the end of the 1980s, the idea became acceptable, and in 1992 the International Union of Crystallography altered its definition of a crystal, broadening it as a result of Shechtman’s findings, reducing it to the ability to produce a clear-cut diffraction pattern and acknowledging the possibility of the ordering to be either periodic or aperiodic. Now, the symmetries compatible with translations are defined as "crystallographic", leaving room for other "non-crystallographic" symmetries. Therefore, aperiodic or quasiperiodic structures can be divided into two main classes: those with crystallographic point-group symmetry, to which the incommensurately modulated structures and composite structures belong, and those with non-crystallographic point-group symmetry, to which quasicrystal structures belong.

Originally, the new form of matter was dubbed "Shechtmanite". The term "quasicrystal" was first used in print by Steinhardt and Levine shortly after Shechtman's paper was published. The adjective quasicrystalline has been already in use but now it came to be applied to any pattern with unusual symmetry. 'Quasiperiodical' structures were claimed to be observed in some decorative tilings devised by medieval Islamic architects. For example, Girih tiles in a medieval Islamic mosque in Isfahan, Iran, are arranged in a two-dimensional quasicrystalline pattern. These claims have, however, been under some debate.

Shechtman was awarded the Nobel Prize in Chemistry in 2011 for his work on quasicrystals. “His discovery of quasicrystals revealed a new principle for packing of atoms and molecules,” stated the Nobel Committee and pointed that “this led to a paradigm shift within chemistry.”